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The far-from-equilibrium statistical dynamics of classical particle systems 
is formulated in terms of self-consistently determined phase-space density 
response, fluctuation, and vertex functions. Collective and single-particle 
effects are treated on an equal footing. Two approximations are discussed, 
one of which reduces to the Vlasov equation direct interaction approxima- 
tion of Orszag and Kraichnan when terms that are explicitly due to particles 
are removed. 
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1. I N T R O D U C T I O N  

Renormalized descriptions of  statistical field theories usually depend on the 
existence of  a noninteracting limit in which mult ipoint  correlation functions 
are simply related to the one- and two-point  functions. In q u a n t u m  field 
theory this relationship is the Wick expansion, and in classical theories it is 
the case of  Gaussianly distributed r andom variables. The Gaussian relation- 
ships may  be viewed as a special case of  the cumulant  expansion when the 
nth cumulant  Cn is zero for n > 2. It is also possible to construct  a renorm- 
alized description even if the noninteracting limit has Cn r 0 for n > 2. For  
every Cn r 0, there will appear  an effective n-point " b a r e ' '  vertex function 
in addit ion to the bare vertices which describe the nonlinear couplings in the 
fundamental  dynamic equations31-a~ I f  there are many  significant C~, any 
perturbative expansion which only retains a small number  o f  the effective 
vertices is bound to fail. Of  course, even if the Gaussian limit is attainable, 
the actual statistical state may be so far f rom this limit that  its perturbative 
description is difficult. 
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A classical gas has the property that its statistics, as described by the 
phase space density 

N 

f ( r p t )  = ~ 8(r - r~(t)) 3(p - p~(t)) 
i = 1  

are very non-Gaussian even for noninteracting particles because of the trivial 
correlation of a particle with itself. Despite the intrinsic non-Gaussianity o f  
f ,  Mazenko (4) has been able to obtain a fully renormalized kinetic theory in 
thermal equilibrium. 

In this paper we develop a renormalization procedure which can de- 
scribe nonequilibrium states. It is based upon the variational methods of 
Schwinger (5~ and the occupation number representation for classical many- 
particle systems of Doi. (6,a~ This representation expresses f as ~b*~b, where 
and ~b* are (classical) particle annihilation and creation operators. In addition 
to the mean value off ,  there are coupled equations for the various correlation 
functions of ~b and ~b t up to and including those which have four (phase 
space, time) arguments. These correlation functions correspond to response 
and fluctuation functions off .  The necessity of both response and fluctuation 
functions is due to the lack of a fluctuation dissipation theorem for a general 
nonequilibrium state. This parallels the situation in the formalism of Martin 
et al., ~9~ which is applicable to continuous classical fields. The occurrence of 
fluctuation and response functions requires the use of two memory functions, 
one of which represents an effective one-body potential and the other an 
effective random source of particles. 

2. THE ESSENTIAL N O N - G A U S S I A N I T Y  OF f 

Let (..-) denote an ensemble average over random initial conditions at 
time t = O. It is well known (1~ that the singular nature o f f  leads to singu- 
larities in the equal-time correlation functions. For example, with the 
definitions 

it follows that 

where 

q = (r, p) ,  f~ = f ( q ~ ,  t~), N~ = (f~) 

( f l f2 ) t l=t2  = N I N z  + H~z + N~ 3(qx - q2) 

H12 = G12 - N1N2 

and G12 is the pair distribution function 

G12 = ~ (8(ql - q,(tl)) 3(q2 - qj(t2))) 

(1) 



Renormalized Kinetic Theory 417 

The delta function in (1) is due to the correlation of a particle with itself and 
H represents two-particle correlations. If  there are no three-particle corre- 
lations besides those due to self-correlations and those implied by H, then 

(f~f2f3),l=t2=t3 = N~N2N3 + N~[N2 3(q2 -- q3) + H23] 

+ N2[N3 a(q3 - q~) + H31] + N3[N~ a(ql - q2) + HI2] 

+ a(qz - q2)n2~ + a(q2 - q3)H31 + a(q3 - q~)H~2 

+ a(q~ - q2) 8(q~ - q3)N~ (2) 

The one-, two-, and three-point equal-time cumulants of f a r e  

C~ = N1, C12 = H~2 + N~ a(q~ - q2) 

0~23 = 8(q~ - q2)H23 + ~(q2 - q3)H31 + a(q3 - ql)H~2 (3) 

+ a(ql - q2) a(q~ - q3)N~ 

Since the three- and higher point cumulants are not small despite the non- 
existence of intrinsic higher particle correlations, a cumulant description of 
the statistics of f is poor. 

The essential nature of C123 is demonstrated by considering the short- 
time limit of the random initial value problem for f .  Let u(r) be the inter- 
particle potential, w(r) its gradient, and assume it to be well enough behaved 
at small and large values of r so that the coefficients in the Taylor series 
expansion of ( f }  and ( f f }  are finite. Let 

F1 = - f  w(rl - r2)f2 dq2 

be the force on a particle at r~ due to its interaction with all other particles. 
fevolves according to the Klimontovich equation 

P ~ A  - ?fl a f l +  + = 0  
at--S 

For short times t, 

f(q~, t) = f (qz ,  0) + tf(q~, 0) + O(t ~) 

N(q~, t) = ( f (q l ,  t)} = ( f ( q l ,  0)} + t(f(q~, 0)} + O(t ~) 

= N(ql,0) + t [  

= N ( q l , 0 ) + t l  

+ ~-~Pl" w(rl - r l ' )Hl ' l  dql' + O(t 2) 

Plm aN(ql' O) - ( F ( x l '  O)'Of(~p'l O ) ~ l  + 

Pl ~N(ql, O) aN(qz, O) 
m ~rl - (F (r l ,  0)}  ~Pl 

(4) 
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N(ql, t) may also be calculated as the coefficient of the delta function in the 
short-time expansion of C~2. While the above expansion for N is independent 
of the initial value of ( f f f ) ,  that of C~2 is not. If C~2 is calculated, ignoring 
the existence of C~2a, then the coefficient of its delta function would coincide 
with (4) except for the term proportional to H, which is missing. Therefore, 
an attempt to describe the statistics of f in an approximation which com- 
pletely ignores its non-Gaussian initial conditions will violate the identity 
between the strength of the delta function part of C~2 at equal times (the so- 
called particle noise) and ( f ) .  Since particle noise is essential to the statistical 
description of collisions, its misrepresentation could well lead to poor approxi- 
mations. Even if the gas is driven very far from equilibrium, it will "remem- 
ber"  its non-Gaussian initial conditions for all times because the form of the 
equal-time correlation functions as displayed in (3) is invariant. 

3. R E V I E W  OF THE O C C U P A T I O N  N U M B E R  
R E P R E S E N T A T I O N  

The following results are taken directly from Doi (6~ (see also the work of 
Katz(7~). Consider the operator algebra generated by the fields ~F(q) and 
�9 *(q), which are assumed to satisfy the commutation relations 

[~(q), ~*(q')] = 3(q - q') (5) 

A space of states is constructed by applying products of ~F+'s to a vacuum 
state [0), which is assumed to have the properties 

(0[0> = 1 (6) 

~rlO> = 0 (7) 

To a given probability distribution function 

F(ql, q2,..., q~; t) = F(q~; t) =-- F (N~ 

of an N-particle system assign the state 

1 F 
]F(t)) = ~.. [ dq N F(qN; t)lq N) (8) 

J 

where 

It follows that 

I qN> = uF*(ql) " ' "  ~*(qN)]0> (9) 

F(qN; t) = (qS[F(t)) (10) 

More generally, if the number of particles is not fixed, the right-hand side of 
(8) is summed over N. To a linear operator A which transforms 

F -~ {F (~ F(I~,...} 
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into 

where 

and A has the form 

F, = {F'2 >, F~>,...} 

F(A ~) = A ( N ) F  (N) 

N 

A(N'(q N) = ~ A~(q~) + �89 ~ A2(q~, q,) + "" 
i = 1  i : ~ j  

assign the operator A, 

~ =  ~1 + 72 +-.. 

Aj. = f dq W*(q)Al(q)W(q) 

.~2 = �89 f dq dq' W+(q)~F*(q')A2(q, q')W(q)W(q') 

Finally, define the state 

Isum) = exp[f dq 'V+(q)][O) 
It can then be shown that 

~[sum) = [sum), <sum/W* = (sum I 

and 

A(t) -- -~. dqUA(X>(qN)F(m(q~'; t) = <suml.g[F(t)) 
N = 0  

In particular, the normalization of F is expressed by 

(sum[F(t)) = 1 

There are three operators A of prime interest: (1) 

g(q) - W+(q)W(q) 

which for an N-particle system corresponds to f (q ) ;  (2) 

~(q, q') - W+(q)W+(q')W(q)W'(q') 

which corresponds to 

8(q - qO 8(q' - q,) 

(11) 

(12) 

03) 

(14) 

(15) 

(16) 

(17) 

(18) 



420 Harvey A. Rose 

and (3) the Liouville operator 

- f dq~ ~*(q~) i f  Pl ?W(ql) 
m ~r~ 

F o'V(qO 
- J| dq~ dq2 W(ql)~*(q2)w(rl - r 2 ) ' ~  q~(q2) 

which corresponds to 
N 

i=1 m ~ri ~ w(r, - rj).~-~ 

i f  is the time evolution operator, 

(19) 

(20) 

(a/~t)Ir(t)> = - i f  IF(t))  (21) 

ri(q) is the phase-space density operator, 

<suml~(q)lF(t)) = Nqt (22) 

and r~(q, q') is the (equal time) pair distribution operator, 

(sum[r~(q, q')lF(t)) = Gqt,q,t (23) 

It follows from (14) that in (22), ~(q) can be replaced by ~(q) ,  and in (23), 
rT(q, q') can be replaced by ~F(q)~(q'). The normalization of F as expressed 
in (16) is preserved in time because 

( suml i f  = 0 (24) 

This is a consequence of (14) and the presence of the derivatives ~/~rl and 
a/apl in (19). 

As in quantum field theory, the time evolution can be shifted from IF) 
to R e and Re* by going into the equivalent of the Heisenberg representation. 
Since the Liouville operator of (20) is time independent, 

IF(t)) = [exp(-  if t)][F(0))  (25) 

and 

.g(t) = ( sum]Aexp( - i f t ) [F (0 ) )  = (sumlexp(if t )  A e x p ( - i f t ) [ F ( 0 ) )  (26) 

where (24) is used to replace (sum] by (sum[ exp(ift) .  If  A is expressed as in 
(12), then .4(t) = exp(5~t) . 4 e x p ( - i f t )  is expressed as a sum of products 
of Re(t) and ~t( t ) ,  where 

W'(t) = exp(if t )  �9 exp(-s  Re*(t) -= exp(if t )  ~F* e x p ( - i f t )  (27) 

4. T I M E - D E P E N D E N T  P E R T U R B A T I O N  F O R M A L I S M  

Schwinger's equations are obtained by adding time-dependent sources 
and sinks of particles to if, and then calculating the variation in the correla- 
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tion function equation of motion. This variation leads to the appearance of 
objects like 

(sum]W(h)W(t2) ..-IF(0)) 

where tl is not necessarily equal to t2. We will now show how some of the 
unequal-time correlation functions can be related to response functions. 

Allow s to be time dependent. Equations (25) and (26) are replaced by 

IF(t)) = U(t)lF(t - 0)) (28) 

A(t) = (sum[X(t)[F(O)) (29) 

where 

and 

A(t)  -- U-~(t) .dU(t)  (30) 

U(t) = r e x p  - ~ ( t ' )  dt' (31) 

s U-l ( t )  - T* exp c~(t') dt'  (32) 

T is the chronological ordering operator, T* is the anti-chronological order- 
ing operator, and the time displacement operators U and U- 1 satisfy 

u - l ( t ) v ( t )  = v ( t ) v - l ( t ) =  1 

~3U(t)/Ot =-coc~(t)U(t), U(0) = 1 (33) 

OU-~(t)/~t = U - ~ ( t ) 2 ( t ) ,  U-~(0) = 1 (34) 

Note that 2 ( 0  does not depend upon q~(t) or ~F*(t), where 

�9 (t) = U-I(t)~FU(t), ~*(t)  =- U- l ( t )~*U( t )  (35) 

Its time dependence arises through that of external particle sources and 
external forces. It is convenient to define 

2i~(t)  = U-~(t)  cs (36) 

Since 2 ( 0  is a product of ~F's and qe*'s, 5?H(t) has the same form as ~ ( t )  
with the replacements ~F -+ ~F(t), '-F t -+ q~*(t). In terms of ~ the equations 
of motion for U, ~F, and ~F t are 

8U(t)/~t = - U(t) C~H(t) 

~W(t)/St = ["F(t),--~H(t)], ~"t( t) /Ot = [~Ft( t ) , - -~( t ) ]  (37) 
Note that 

pr(q, t), 'e*(q', t)] = 8(q - q') 
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The analogy with quantum field theory may now be completed by 
obtaining formal expressions for the response to time-dependent perturba- 
tions. Let 

~ = ~ o +  ~ 
where s is an "unperturbed" evolution operator. Denote the time displace- 
ment operator and the time-dependent representations of tF and W t that 
correspond to ~o by Uo(t), q%(t), and tYot(t), respectively. Define 

&,~o = Vo ~&Uo,  .~o,~ = v - l & v ,  

~#~o = U o - 1 8 #  Uo, ~#~ = u -~ 8 #  u 

where the time indices have been suppressed. Let 

u =  Uo.SU 

and equate the following two expressions for OU/~t: 

to obtain 

Since 

and 

it follows that 

o r  

Similarly 

au/at  = - Uo~o.o ~ v  + Uo a~u/at 

~2~, = ~ v  -~ ~-~o ~ v  

~ V l O t  = - 8#,~ o 8 v  

f2 8U(t) = Texp - ~ o ( t ' )  dr' 

U- l ( t )  = 3U-~(t)Uo~(t) 

with 

3U-l( t )  = T* expf~ 

Note that 8~no(t) is a functional of 

Wo(t) = Uol(t)WUo(t) and 

~&,o(t') dr' 

Wo*(t) -- Uol(t)WtUo(t) 

(38) 

(39) 
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If  we further define Ao(t) = Uo x(t)A Uo(t), then 

.Y(t) = ( suml  3U- l(t)Ao(t) 3U(t)]F(t = 0)) (40) 

As in (26), 3U-Z(t) may be replaced by unity. 
If  8if' is "small ,"  the exponential in (38) can be expanded in powers of 

35P to obtain the linear response of A, the quadratic response of 7 ,  .... For  
example, to linear order, the change in A due to the perturbation 3 2  is 

f2 3A(t) = - dt'  (sum[A0(t) 32Ho(t')]F(O)) (41) 

The meaning of (sum[~(t)tF*(t')lF(O)) can be found by considering the 
linear response of N to a source of particles. Let 

3 ~ ( t )  = [1 - V * ( q ' ) ]  ~( t  - t ' )  

Since (sum[8~- = 0, the normalization of IF) is preserved. To calculate SN, 
set A = ~ :  ~N(q, t) = (suml(~(q,  t)tF*(q't ') - q~(qt))lF(O)). The equal- 
time commutation relation between tF and T + implies that 

lira 3N(q, t) = 3(q - q') 
t ~ t "  

Therefore, 

R12 = (sum[TTltF2t]F(0)) - (sum[tF~[F(0)) 

= (sumITaF~tF~*[F(0)) -- (sumltF~[F(0)) .(sum[~2*tF(0)) (42) 

gives the retarded linear response in the mean particle density at 1 [ = (ql, tx)] 
to the injection of a single particle at 2. 

Let us also examine the pair distribution response ~Gqlt,q2 t to the in- 
jection of a pair of particles at (ql', t ') and (q2', t'). For  this perturbation 

~s = [2 - Tt(ql ' )  - ~Ft(q2')] 3(t - t ')  

The exponential in (38) must be expanded to second order in 3 ~  to see the 
interaction of the two injected particles with each other. Suppressing the 
contribution from all but the lowest order pair interaction term, we have 

3Gqlt,q2 t = (suml~F(q~t)~F(q2tyFt(ql't')~F*(q2't')tF(O)~ (43) 

Besides the response to the injection of particles, there is the more 
traditional response to an external force. If  the Hamiltonian is changed by 

~H(t) = ~ V(r,, p, ,  t) 
l 
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then 

~xe(t) = , ~ . N -  0r-]'~p-] 

8~(t) = dq V(q't)[-~r Op Op -~ 

3N(q, t) _ (sum['F(q, t~[~F*!q', ' t ') 0'F(q', t') 
3V(q', t') "[ Op ~r' 

_ o'V*(q',or, t'). o~V(q ',ep, t')] [F(0)) (44) 
The interpretation of(sum[U~(qt)~(q't')]F(O)) for t r t '  is deferred until 

Section 6. 

5. THE S C H W I N G E R  V A R I A T I O N A L  E Q U A T I O N S  

Introduce the two-component matrix 

q)(1) - ~(q~, al ,  h), a~ = _+ 

where 

qb(q~, + ,  t) -- ~F(q, t) and ~(q, - ,  t) --- ~F*(q, t) 

All the correlation functions of interest can be generated from the functional 

W(~) ~ In(sum]Texp q~(1)~(l)iF(0)) (45) 

by differentiation with respect to the numerical valued matrix 7. In (45) a 
summation convention is used where repeated continuous (discrete) indices 
are integrated (summed). The functions 

6 " 0 , . . . ,  k )  - 8 ~ w / ~ , ~ ( 1 )  ... ~,~(]r 

reduce to the cumulants of (I) when V = O. For example, 

l imG"(1 )=  ( N ~ ) " ~ 0  ' limG'(l'2)=[C12740 [R21 ~2] 

where 

C~2 ~ <sum[W'(1)W'(2)lF(0)) - N1N2 

Note that G(q~ + t,..., qN + t) is the N-particle Ursell function, and that 

lim G"( - ,  - )  = 0 
t t~0  

because 

(sumlWtW+lf(0)) -- 1 = (sum[W'If(0)) 
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In terms of q5, the Liouville operator in (19) can be written as 

- ~ ( 6 )  = 93z(12)~(1)~(2) + 934(1234)q~(1)*(2)~(3)~(4) 

(no integration over q), with 

932(q~a~t~, q2a2t2) =- - 3 . 1 - 3 . ~ +  ~ ' - ~  ~(ql - q2) 3(tl - t2) 

and 

Since 

and 

_= a . ~ _ a . ~ _ a . ~ + a . , + w ~ . ~ - r ~ ,  a(q~ - q~) a(q~ - 6,4) a(t~ - t , )  a(t~ - t4) 

(47) 

[~F, W~F*] = pF, ~F*~F] (at equal times) 

where 

932 can be replaced by 172, where 

9,2(12) - 932(12) + 932(21) (48) 

In the 934 term of ~L~-, any rearrangement of the @'s can be compensated for by 
modifying 9,2, and hence 934 may be replaced by (1/4!)~,4, where 

9,4(1234) = sum of 934 over all 4! permutations of its indices (49) 

~'~ can now be expressed in the symmetric form 

- ~ ( t l )  = �89 + (1/4 !)9,4(1234)~(1)@(2)(b(3)qb(4) (50) 

If  the interparticle potential is an even function, w is an odd function and the 
9,2 in (50) is the same as in (48). 

The commutators of �9 satisfy 

[q~(qlalt), ~(q2a2t)] = "G~2 ~(ql - q2) 

Therefore 

(b(1) = [q~(1), - ~ - ]  = T72(12)~(2 ) + (1/3!)'rr4(1234)q~(2)q~(3)~(4) 

(46) 

w z 2  = g ( t l  - -  t 2 ) w ( r l  - -  r 2 )  
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o r  

where 

Go 1(12)d~(2) = (1/3!)y4(1234)qb(2)qb(3)qb(4) 

Gffl(12) --- - .  ~ 8(ql - qa) 8(tl - t2) - y2(12) 

= - ~b-~ + m ~ r J  8(ql - qz) 8(tl - tz) (51) 

The occupat ion number  operator  algebra is now in a form which 
exactly parallels that  of  quantum field theory. The reader is referred to 
DeDominicis  and Mart in  (n~ for the details of the renormalizat ion procedure.  
The key results are summarized below. G'(1) satisfies 

Go~(12)Gn(2) = ~(1) + (1/3!)y~(1234)[Gn(234) + 3Gn(2)G(34) 

+ Gn(2)G"(3)G"(4)] (52) 

It is convenient  to work with the inverse of  G(12), 

G-*(12)G(23) = G ( 1 2 ) G - l ( 2 3 ) =  8(q~ - q a ) 8 ( q  - ta)3~, a 

which is determined by a memory  function Z, 

G-1(12) = Gffl(12) - Z(12) (53) 

Z in turn can be expressed in terms of  G(12) and the renormalized three- and 
four-point  vertex functions defined by 

Pa(123) -~ 8 a [ W -  ~(4)G(4)]/SG(1)SG(2)SG(3) (54) 

P4(1234) = 8Pa(123)/SG(4) (55) 

I t ' can be shown that  

Pa(123) = G( i23)G-  ~( i l )G-  1(22)G- ~(33) (56) 

P4(1234) = G(i72374)G- ~(i 1)G- 1(2-2)G- ~(33)G- 1(744) 

- P~(523)G(56)Pa(164) - P~(153)G(56)P,(264) 

- Pa(125)G(56)Pa(364) (57) 

Y~(11') = (1/3 !)y4(1234)[3a(21')G(3)G(4) 
+ 38(21')G(34) + 3G(4)Fa(52Jl')G(722)G(33) 
+ P~(72~741')G(22)G(33)G(744) 
+ 3Pa(5374)G(56)Fa(61'2)G(22)G(33)G(744)] (58) 
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3E(12) 8Z(12) G(46)F~(376)G(75) (59) 
F3(123) = 3G(3-----~ + ~--G~(45) 

F4(1234) = D(12; 34) - F3(135)G(56)F3(624 ) 

- P~(164)G(56)F3(523) (60) 

3E(12) I 3Z(12) G(77)G(88)D(78" 34) (61) 
�89 34) - 3G(34) + 2 aG(78------~ 

Equations (52), (53), and (58)-(61) are a closed set of equations. Though not 
apparent from the functional manipulations (11) which led to them, this set is 
exact if and only if the initial conditions satisfy a Wick-type theorem. This 
means that GN(+, + ..... + )  = 0 for N > 2, which corresponds to the initial 
absence of three- and higher particle correlations (see Appendix A). 

If  r] is set equal to zero, the above set deals with physically realizable 
fluctuation and response functions. If  "O(+)= 0, but ~7 ( - ) r  0, the set 
refers to the usual classical gas supplemented with a source of particles 
7 ( - ) .  In either of these two cases, we can make the following general state- 
ments. Since G ( - )  = 1, one of the two equations contained in (52) is trivial. 
The other is the exact equation of motion for N in terms of itself and the 
equal-time pair distribution function. Replacing the latter by C + NN,  we 
obtain the usual 

~N1 pl ~N1 ~N1 , 0 . i w ( r l -  ~3t---~- -t- m" c3rl § (171) c3pz ~Pl r2)Cqltlq2t 1 dq: (62) 

The vanishing of G ( - ,  - , . . . ,  - )  implies that Z (+ ,  +),  F3(+, + ,  +),  and 
F4(+, + ,  + ,  +)  vanish. The retarded nature of R implies that Z_+(tl ,  t2) 
also vanishes unless tl 1> t2. Equations (53) and (51) and the above properties 
of Z yield 

= ~(q~ - q~) ~(tl - t~) (63) 

0 1 " ~  , , 
+ m Pl Cqltl q3ta - Z(ql, - ,  ta; q2, +,  t2)Cq2t2 q3ta dt2 dta 

f? = Z(ql, - ,  tl ; q2, - ,  t2)Rq~.q~t~ dt2 dq2 (64) 

If  the system is spatially homogeneous, C, R, and Z may be represented 
by their Fourier transforms C(k), R(k),  and ,Z(k). Suppressing the dependence 
upon momentum indices, and denoting the operation of time history integrals 
by an asterisk, we have schematically 

--~ C(k) - Z_ +(k)*C(k) = 2_ _(k)*_R(-k)  
~t 
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Given a certain level of fluctuations at k, Y,_ + can cause them to grow or 
decay, and when viewed as a matrix in its velocity indices, transfer fluctuations 
from one component of C to another. Since R is the linear response 8N of 
the mean phase-space density to a source of particles -q, 

[~/Ot - Z_ +(k)*] 3N(k) = o(k) (65) 
o r  

3N(k) = R(k)*~(k) (66) 

Let k -+ - k  in (66), and multiply (65) and (66) together, 

[ ~ / ~ t  - ~ _ + (k)*l &g(k) �9 ~ ( -  k) = ~(k)~(-  k)*/7(-  k) 

If ~ is random with zero mean, and if (Iv(k)[ 2) is its covariance, then 

[~/~t - 2_  +(k)*l(18N(k)lb = ( [ v (k ) l~ ) *P~( -k )  

Comparing this with (64), we may interpret Z ( - ,  - )  as an effective random 
source of particles. Since, as we will later show, Z ( - ,  - )  includes terms 
which are quadratic in C, it can transfer fluctuations from one wave number 
to another. 

6. THE REPRESENTATION OF M U L T I - T I M E  
FLUCTUATION FUNCTIONS 

To make contact with other methods of calculation, we must identify 
the correlation function C, and more generally all unequal-time correlation 
functions which are not response functions. If  .4 and/~ are operators of the 
kind described in (11) and if tl /> t2, then 

A(tl)B(t2) = <sum].4(h)B(t2)[F(O)) (67) 

This follows from the arbitrariness in the choice of time origin. (~2) If instead 
of "0 , "  t2 is chosen as the origin, then BIF(t2)) takes the place of/7(t2)[F(0)). 
Since/~]F(t2)) may be regarded as a new phase space function, (67) follows 
from (29). 

Another derivation of (67) is presented because it is easily generalized 
to the product of any number of operators and because it may aid in the 
proof of the realizability (see Section 8) of certain approximations. The states 
]qN) are a complete set, and we may symbolically write 

= ~ [qN)(qNI 

which for convenience will also be written in the form 

1 = lqN)(qN[ (68) 
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It then follows from (30) that 

(sum[A(tl)B(t2)]F(O)) = @uml.4U(q)U-~(t2)[qN)(qN[~U(t2)lF(O)) (69) 

(qN[U(t2)[F(O)) is the probability that the state F(0) has evolved into the 
state qN at time t2, and (qN[BU(t2)lF(O))/(qN [ U(t2)[F(O)} is the mean value 
of B in that state. Given that the system is in state [qN} at time t2, 
(sum].4U(h)U-~(t2)[q N} is the mean value of A at the time q ,  since 
U(tl)U-~(t2) is the time displacement operator between times t2 and h .  
Therefore, (69) is a representation of A(q)B(t2) as a summation over the 
mean values conditioned upon being in a particular state qN at the inter- 
mediate time t2. This is easily generalized to prove that 

A(h)B(t2) ... C(t~) = (sum[A(h)/~(t2)-.. C(t~)[F(0)} (70) 

Now Cq~.q,v can be related to the phase-space density-density fluctuation 
function. Recalling (17) and the notation used in (1), and taking tl >/ t2, 

f l f 2  = (suml~F*(q~tl)~F(q~q)~F*(q2t2)~F(q2t2)[F(O)} 

= @um[TW(qzh)W*(q2t2+)~F(q2t2)lF(O)} 

where 

t2 + = t2 + a positive infinitesimal 

fz f2 = G(q~, +,  tz ; q2, - ,  t2 + ; q2, +,  t2) + G(qz, +,  tl; q2, - ,  t2)N2 

+ G(ql,  +,  h;  q2, +,  t2) + G(q2, - ,  t2 + ; q2, +,  t2)N~ + NaN2 

Since G(q2, - ,  t2 + ; q2, + ,  t2) = 0, we obtain 

(f~f2)a,-t2 = G(q~, +,  h ; q2, - ,  t2 + ; q2, +,  t2) 

+ N2Rq~t~,q~t2 + C~t~.~t~ + N~N2 (71) 

and a similar result if t~ > q .  The three-point cumulant in (71) is expressible 
in terms of R, C, and Fa, which to the lowest order in perturbation theory 
(see Section 7) is essentially 7~ integrated over one of its arguments. Together, 
Eqs. (44) and (71) constitute a generalization of the well-known relationship 
between the density-density fluctuation function and the density response to 
an external field which couples to the density. 

7. C O R R E S P O N D E N C E  W I T H  OTHER M E T H O D S  

The renormalized kinetic theory of Mazenko (see the review by 
Mazenko and Yip(~)) is a natural candidate for comparison because it too 
deals with a renormalized description of classical many-particle systems. 
Unfortunately, the steps necessary to reduce the general formalism presented 
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in this paper to the special case of thermal equilibrium are not apparent. In 
the application of the Martin et al. (9~ formalism to continuous systems which 
satisfy a detailed balance condition, a reduction from two propagators (R 
and C) to one is made possible through the use of a fluctuation dissipation 
theorem. (13~ This theorem gives a linear relationship between C and R. 
However, for a gas in thermal equilibrium, the fluctuation dissipation theorems 
do not address themselves to the response to the injection of particles. 
While there are relationships between this kind of response function and the 
more usual ones, as outlined in the previous section, it is not clear whether 
or not there exists a simple closed form relationship between C and R. An 
attempt to follow the manipulations used in the quantum field theory of 
thermal equilibrium, whereby ('FtF*~ is related to (tF*~F), breaks down 
because there does not seem to be any correspondence with the cyclic in- 
variance of the trace operation. 

Let us now examine some simple perturbative approximations to the 
exact system of equations presented in Section 5. The perturbative method 
will be one in which the interparticle potential is regarded as weak. This is 
unsuitable in the case of hard-core interactions, for which a generalized 
T-matrix approximation is introduced in Section 9. 

If ~'4 is weak, then I' 3 and I74 may be expanded as a power series in 74 
whose leading terms are essentially 7~. The first-order contribution to Z, 
y~(1), is therefore found directly from (57): 

Z(1~(12) = �89 + G(34)] 

Z(1)(ql, - ,  tl ; q2, + ,  t2) 

- t2)[w(rl - ~N1 ~ ( q l  - q2).(F1)] = 3 ( t l  r 2 ) ' ~ p - ~ l  ~ P l  

Y~l)( q l '  - '  tl ; q2' - '  t2) = ~(h - t2)w(rl - r2)" ( ~  p~) 

Equations (64) and (72) yield 

ONz f . 
- -  ~ " / w t r l  -- r 2 ) C ~ , ~ ,  dq2 

pz J 

while the equation for R coincides with that obtained from the linearized 
Vlasov equation. 
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If  ta = tl +, then Rq3t3,q~a = 3 ( q a -  q2), and in the corresponding 
equation for ~Cla/~ta, the right-hand side of (73) is replaced by zero: 

~Na [ 
- ~ "j  w(r3 - r2)G~ta,qltl dq2 = 0 

If  the system is spatially homogeneous, (F} = O, ~/~r3 = -a/~r~,  and it 
follows that 

.__~_~ �9 

r [~N~ ~c~N3"w(r3-r2)Cq2tl,q~t~]dq2 + 

This is precisely the equation used by Book and Frieman <~5> in their close 
collision improvement upon the Balescu-Lenard equation. They obtained it 
from the BBGKY hierarchy by setting the three-body correlation function 
equal to zero. 

The second-order approximation for E requires a first-order approxi- 
mation for ra and Pd. From (59) and (60) we obtain to this order 

Fa(123) = 3E(12)/3G(3) = 74(1234)G(4), I'4(1234) = 74(1234) (75) 

The 74F4 term in (58) makes no contribution because with F4 = 74, there 
will either appear a factor G ( - ,  - )  = 0, or the factors JRtl,t2Rt2.t ~ = 0. The 
second-order contribution to Z, 2; (2~, can therefore be written as 

E(2>(12) = �89 ) (76) 

Superficially, this has the form of the direct interaction approximation (DIA) 
for quadratically nonlinear equations of motion, such as the Vlasov equation 
and the Navier-Stokes equation. (z6-~8~ However, there are essential differences 
due to the presence of explicit particle noise terms. To first order in the inter- 
particle potential, this is the ( N N  + C) term in (72), and to second order in 
the potential it arises from the existence of two components to F3 : 

F3(+ + - )  ~ )'4(+ + - - ) ,  Pa(+ - - )  ~ 74(+ - - + ) N  (77) 

If  only the (+  + - )  component is used in (76), and if E(1) (  - , - - )  is ignored, 
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the equations for C and R precisely correspond to the Vlasov plasma DIA. ~10) 
Including the particle noise terms, (76) yields 

Z(2)(ql, - ,  tl; q2, + ,  t2) 

~C12, ~R1,2 ~2R12 
- ~Pl "wz'2wlv"-~-P2 § wl,~.0pz ~p2 "w22"C1'2" 

0~C12 , ~R12, ~C1,~, 
+ w22,'~p2, 0pl"WvlRv2 ' + 0p-----~-.wav Op2----"~'W2'2 

~2R12 ~R12 w R ~N2, 
+ wvl"~pl ~p2 "w22"Rl"2"N2" + --~1" lz" 1'2" ~p2-----:'w2'2 

~R12, N2, 0R1,2 ~R12, w R ~N2, (78) + w1,1. ep---;- + -y -p �9 

Z~2~(ql, - ,  q ;  q2, - ,  t2) 

= WII"~Pl ~P2 "w22"CI'2' + 2 OPl "Wll' -~--P2 ~ 
\ 

~RI~, ~N~, ~R~, N~, ~CI,~ + w~v'-'~-p~ C~,2 ~-~-.w~,~ + way" ep---'~ ~p---~.w~, 

~C~2 ON~, O~C~ 
+ w~l,---~p~ Rye, ~-~,.w~,~ + w~v'c2p~ ~p'W22,R~,~,N~, 

cqR12, ~N2 vgR12 , ~C1,2, w2 2N 2 + w ~ , . - - ~  Cv~,w22,'-~p~ + w~,.  ~Pl ~-~' " ' 

~C1~, ~N~ ~C~2, "" R "~ + w~l, ~ - -  Rv2,w2,2"~2 + w~v'~p~ c2p~,'wz'2~v2 v2"f 

+ {1 +-+ 2} (79) 

In the above equations there is an implicit integration over dql, dqz, and over 
dq, dt~,. Since w has a delta-function dependence on its time difference 
variable, all the correlation functions are evaluated at the time t~ and t~. 
We shall call the equations for N, C, and R obtained from the expansion of 
2; to second order in the interparticle potential the "particle direct interaction 
approximation" (PDIA). 

To better understand the significance of the non-Vlasov DIA terms in 
Z, we refer the reader to a recent paper by DuBois and EspedalJ 17) They 
describe a plasma in the Vlasov approximation and also construct an approxi- 
mate statistical theory for the Klimontovich equation in the limit of large 
plasma parameter by regarding the phase-space density f ie ldfas  the limit of 
a continuous field which has its equal-time covariance constrained by (1). 
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We have shown that the preservation of (1) is dependent on the proper 
treatment of the non-Gaussian initial conditions; DuBois and Espedal do not 
consider the initial value problem, but rather impose (1) at equal times. This 
procedure can be shown to be valid only to lowest order in the inverse plasma 
parameter. The Vlasov DIA is used and the covariance o f f  is decomposed 
into two par t s , /~  + C s, where ~ at equal times is the H of (1) and C s at 
equal times is the singular part of (1). For  unequal times, C ~ is "renorm- 
alized particle noise," and it roughly corresponds to the R N  term in (71), 
while ~ roughly corresponds to our C. The Vlasov DIA equation for 
C v -- (3f.  3f)  is of the form 

(8/8t - E_ +)C ~ = Z_ _R (80) 

If one writes 

C ~ = Zl + C s (81) 

and then attempts to separate (80) into equations for ~ and C ~, it is possible 
to make a correspondence with some of the explicit particle noise terms in 
the PDIA. If  (81) is substituted into (80) and if C ~ is replaced by RN,  then 

(8/8t - Z_ +)H = (Z_ +N + Z_ _)R - 8C~/8t 

The Vlasov DIA expression for E _ is supplemented by some of the terms 
in Z_ +N (some, because those that go into 8C~/8t remain to be specified). 
In particular, one of the first-order terms in Z_ + is of the form w.SN/ap, 
and it contributes to Z_ _ a term which corresponds to one of the first-order 
terms in the PDIA. In addition to the terms generated by Z_ +N, if each C v 
in the Vlasov DIA expressions for Z is replaced by (81), then some other 
particle noise terms in the PDIA are reproduced. 

Independent of questions concerning particle noise, DuBois and Espedal 
have made an important connection between R and the more traditional 
dielectric response function d defined by 

dx2 = - [3U(rl, t~)13p"Xt(r2t2)], 

where U is the total electrostatic potential, and p ext is an external charge 
density, p e~t determines an external potential 

u ext(r~, h) = [ 
p~Xt(r2, tl) dr2 

whose gradient pushes particles but does not create or destroy them. U is 
the sum of U ~xt and the induced potential Uina, 

f N(q2, h) dq~ U ~ n a ( r l , h )  = - e  4~ l r l  ~ 
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R and d are related through the phase-space density response function 

G(q~tl, q2t2) - [SN~/3~(q2, - ,  t2)]v (82) 

The essential difference between R and G is that the former gives 8N at 
constant U~Xk DuBois and Espedal find the exact relation 

f R(q3h, dqo = d~aG32 (83) q2t2) 
4~[rl - rs[ 

To the extent that some turbulent plasmas are described by N, d, and the 
charge density covariance, there is redundant information in R and C which 
can be eliminated through the use of G and d. 

Since (83) involves the integral of R over its first momentum variable, 
another relation is required if R is to be replaced by G. DuBois and Espedal 
have found such a relation [Eq. (89)] between R-  ~ and G-~. It is derived 
perturbatively, with the level of potential fluctuations as the small parameter. 
Section 8-10 of this paper are independent of the immediately following 
paragraphs, which are devoted to a formally exact generalization of Eq. (89). 

o r  

First, an alternative proof of (83) is presented. Let 

pins ~ __AUind 

pl~a(rz, q) = - e  f N(q~, tz) dpl 

The definition of G implies that 

- e f a(q~tz, q2t2) dp~ = [Sp~a(r~, h)/3~210 

By use of the chain rule 

( SP'nd(rl , h)) v 

_ (SPlna(rl,tl)) 

and 

3pina(rl, h) 
U eXt(r3, ta) 

[ 3pi"a(ri, ti)~ [SUeXt(ra, t3)~ + 
/ u 

8plna(ri, ti) 
- -A38(ra - r4) 8poXt(r-------~4 ~ ta) 

3 ulna(r1, h) 
= A1AaS(ra - r~) 8peXt(r4 ' ta) 

= A3[-Aldla + 3(rl - r3) 8(h - t3)] 

(84) 
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Also, 

Uext 

and 

= - e  f R(q~h, q2t2) dpz 

= - e  f As q2t~) dq4 

Make the above three substitutions in (84) to obtain 

(~pind(rl 'h))  - e f  [R(q~q, q2t2) + G(q~h q2t2)] dpl 

+ eA~ f d~3G(qats, q2t2) dq3 dta 
Therefore 

f R(q~q, q2t2) dpl = A~d~aGa2 

from which (83) follows directly. 
Now consider the inverse of (82): 

(~7(q~--, h)) 

_ {~7(ql.--, h)] + {~7(ql, - ,  tl)] {~U"~t(r3, t~)) 
\ 872 / vo~ \ 3 U~ ta) / N \ ~N2 

= Ri-2~ _ ( 3 7 ( q z , - ,  q)]  [/3U~d(rz, t3)) 
\ SU~Xt(rs, t~]N~ ~ V 

= R;~ + e f (~7(q~,--, tl)] $(t3 -- t2) 
~ U~Xt(ra, t3) ] N 4-~[ra --  -~-21 dra dta 

The equation of motion for N in the presence of an external potential and 
a source of particles 7 ( - )  is 

~N1 1 c2N 1 f ~ U ~trr 1 - -  el. t .z,  h )  ~U'~(r~ ,  h)  c~N~ 
~tl + m p~'-~r~ + [ c~r~ + ~r~ "~p~ 

= 7(ql, - ,  h)  + ~ p ' f  w(ra - r~)Cqm,~ m dq~ (85) 
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Therefore  

~N1 ~ 3 ( r l - r s )  3 ( q - t 3 )  e ~p---]- "~r--~ 

[3v(ql, -_. tl)~ 0 f / 8Cqltl q2tl 
\SVeXt(ra, ta)]u + -~p._ w(r~ - r2)~3UeXt(r~ ' ts)JN @2 (86) 

By use of  the chain rule 

3C12 

{ 8C12 ~ + ( 3Cm i {8~(q4, - .  t4) I 
\~uox-~~-i, t~y~r \8~(q~, - ,  tO] ~ox~\Sv~ t~)],~ 

i ~C~ ) 
= \SU~ t~) .(-) 

�9 , ~t&'7(q4, - , t 4 )  I 
+ G(ql, + ,  t~ ; q2, + ,  t2, q4, - ,  ,~J ~ ( r 3 ,  t3) J N 

Substitute the above into (86) to obtain 

[8(q~ - qO 3(t~ - t4) + ~--~l'w~2G(q~. +. q;q2. +. t2;q4. - .  t4) ] 

[8~(q4, - ,  tO I 
• 1 8U~Xt(r3, to) ] 

~Xl c9 8(rl - ro) 8(t~ - to) - w12"~--~1 \SU~X-~3 ' t3)] ,(-)(87) = e ~p~ "~r--~ 

To calculate 8C/8U ~xt, use the response function formalism of  Section 4. 
The effect of  3U ~xt is described by a change in the Liouville operator  8 ~ :  

( ~ .  [~r*(q~t~) ~(q~t~)l aq~ e3  u ext(rs, ts) 8r~ [ ~p~ 

8 U ~ - ~ t 3 ) ]  ~- 

f ~ 5 2 = - e  8(ra - r~) 3(ta - t ~ ) - ~ . 3 ~ ( q ~ ,  + ,  q) @(q2, + ,  tz) 

• (sum[ ~F*(q~ts) W(q~, t~)[F(0)> dq5 dt~ 

= - e  8(ra -- rs) 3(to -- ts) lim 
~5 + ~ra" ~p4 

• [G(ql, +, t,;q~, +, t~; qs, +, ts; q,, --, t~) 
+ N~G(qz. +. t~ ;q2. +. t~; q~. - .  G) + Cx~R2~ + C~R~4] dq~ dt5 (88) 
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When (88) is substituted into (87), which is solved for (~]~U~Xt)N and then 
substituted into (85), the desired relation between R-  x and G- 1 is obtained. 

To Obq), 

( 3~7(q4, --,. t4)] c~N1 (3 3(rl - r3) ~(h - ta) 
8 UeXt(r3ta) ] N = e ~p.&---~ 

+ e w~2" g~ra" 3(ra - r~) 3(ta - ts) 

~R25 c~R15] x C~s Op~ + C2s-~5]dqsdt5 

Therefore, to 0(74) 2 , 

a t )  = R;~ + ON~ c~p--~-'wlz- f dq4 dt4 f dq3dt~(w14"~) 

[ ~R43 ~RI~\ (89) 

This is the second relation reported by DuBois and Espedal. 

8. C O N S E R V A T I O N  L A W S  A N D  REALIZABILITY 

What properties of the exact correlation function equations are shared 
by the PDIA ? When there are no initial three- or higher particle correlations, 
the fundamental equations (52), (53), and (58)-(61) are exact, and it is easily 
shown that the short-time Taylor series expansion of C and R (if it exists) 
coincides with that of the PDIA to O(t2). In particular, this means that all 
the conservation laws and realizability conditions are satisfied for short 
times. By realizability (~8,~9~ we mean those relations which follow from the 
representation of the correlation functions as expectation values. 

The conservation of particle number, momentum, and energy is easily 
satisfied for all times. Particle and momentum conservation follow directly 
from the equation for N whose form is independent of our approximation 
procedures. The evolution of the fluctuating electrostatic potential energy is 
determined by the evolution of f C(rzplt, r2p2t) dpl dp2. Since Z(ql,  - ,  tt ; 
q2, + ,  t2) and Y(qz, - ,  tz ; q2, - ,  t~) always have a leading factor of ~/~Pl, 
the approximate equation for the fluctuating potential energy obtained from 
(64) is in fact independent of the approximation used for Y,. The cancellation 
between the time rates of change of kinetic and total potential energy then 
follows in essentially the same way as it does for the Klimontovich equation, 

Is the PDIA realizable for all times ? A strong affirmative answer would 
consist in demonstrating the existence of a model particle system whose exact 
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N, R, and C satisfy the PDIA. This would not necessarily imply that it is a 
" g o o d "  approximation. The model system, for example, might have un- 
physical instabilities. For  continuous fields, Kraichnan (18~ has constructed a 
stochastic model which proves that the DIA is realizable; however, for the 
Vlasov DIA, this realizability does not include those constraints which 
follow from the positivity o f f .  If  the PDIA is realizable in terms of a model 
particle system, then b y  definition it follows that Nq = ( ~  3(q - q~)) >/ 0. 

A weaker affirmative answer to the above question would consist in first 
establishing certain properties of the true N, R, and C functions, and then 
showing that these properties are also true for the corresponding PDIA 
functions. We have already mentioned that N should be nonnegative. For  the 
Vlasov DIA, the function which corresponds to C is a covariance and it 
must be a positive-definite matrix. The C function in the PDIA is not a 
covariance. Indeed, in thermal equilibrium, the fact that like charges repel 
each other implies that C(qlt, q2t) < 0 for a one-species plasma. Since the 
potential energy of two approaching similar charges goes to positive infinity 
in spatial dimensions d/> 2, 

lim C(rlplt; r2p2t) + N(rlpJ)N(r2p2t)  = 0 
T 1 ~ T 2 

This is true regardless of the statistical state. 
Kraichnan (20~ has also constructed stochastic models for many-particle 

quantum systems to prove the realizability of some well-known approximate 
statistical theories. (~8~ It is conceivable that the realizability of approximations 
in the context of the classical occupation number formalism may be dem- 
onstrated in a similar manner. This will not be entirely straightforward, 
because the quantum mechanical models are generated by model Hamil- 
tonians which are constrained to be Hermitian, whereas we require a model 
Liouville operator which must be constrained to maintain the positivity of 
the N-particle probability distribution functions. 

9. THE T - A P P R O X I M A T I O N  

While individual collisions, for hard-core interactions, are singular, the 
mean collision frequency is regular since it is determined by the dynamics 
between collisions. By solving (60) for 74 in terms of P4 and inserting this 
solution into the expression for 2;, attention is shifted to this mean rate. This 
procedure yields the so-called vertex-renormalized approximations. 

Assume that Pa and P4 are "small ."  More properly, the two dimension- 
less variables schematically denoted by (GGG)ll2Y'a and (GGGG)ll2F~, where 
G is the two-point matrix cumulant, are assumed to be small. (1~ To obtain 
7~ as a functional power series in I'3 and P4, it is simplest to revert the ex- 
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pansions of F3 and P~ in powers of )'4. These are represented in Fig. 2. The 
fundamental graphical elements are defined in Fig. 1. 

The reversions of the equations in Fig. 2 are shown in Fig. 3. The 
equations in Fig. 3 imply that 

r~(123) = F4(1234)<~(4)> + O(P4) a (90) 

To obtain an O(P) 2 approximation to 2], we first illustrate the exact 
equation (58), omitting the 7~(F3) 2 term, in Fig. 4. In Appendix B we dem- 
onstrate that the y4F~ term in Z, with F4 determined by Fig. 3,  vanishes. 
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Ignore this term, substitute for 74 as given in Fig. 3 and for F3 as given in 
(90) to obtain Fig. 5. Figures 3 and 5, and the equation obtained from (62) 
by expressing w in terms of I'4, constitute a generalized T approximation. 

It differs from the corresponding quantum mechanical approximation (1~ 
in three respects. The latter has an equation for F4 whose homogeneous 
terms are linear in F4. We could obtain a simpler approximation with this 
feature by replacing each of the I'4I' 4 terms in Fig. 3 by �89 + 74P4). 
Though easier to deal with analytically, we have no fundamental reason for 
preferring it over the original. Another difference is the retention of the 
O(F) 2 terms in E. Presumably there are situations in which their deletion 
would not lead to any qualitative changes. We have retained them so that in 
the special case where 74 itself is weak, the PDIA is recovered, in which the 
(74) 2 terms describe fluctuation-fluctuation interactions. Third and most 
important, the iterative solution for F4 generated by Fig. 3 contains more 
than the usual ladder diagrams. For example, to third order in 74, there 

IE = -~ 

F i g .  4 
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Fig. 5 

appear the diagrams in Fig. 6. The non-ladder (second) diagram in Fig. 6 
occurs because there are two propagators,  R and C; which in turn implies 
that 174 may have components 17(-, + ,  + ,  +) ,  P ( - ,  , , +) ,  and 
F ( - ,  - ,  - ,  - ) in addition to the component  F( - ,  - , + ,  +) .  I t  is shown in 
Appendix B that F ( - ,  + ,  + ,  + )  vanishes and that only the ladder diagrams 
contribute to 17(-, - ,  + ,  +) .  There are diagrams, including both of those 
in Fig. 6, which do contribute to 17( , , , + ) a n d 1 7 (  , , , - ) . I t i s  
easily shown that the 17~ of Fig. 3 has the property that 17( , , + ,  + )  has 
no factors of  C, 17(-, , , + ) h a s a s i n g l e f a c t o r ,  and17( , , , - ) h a s  
two factors. To first order in 174, we have fi'om Fig. 5 

E ( - ,  +) , .~ F ( - , - ,  + ,  + ) N +  17(-, , , + )  

Very roughly, let us write 

V ( - ,  , , + )  ~ (C/R)17(-,  - ,  + ,  + )  

and then 

Similarly, 

z ( - ,  + )  ~ IV( , , + ,  +)/R](RN + C) 

and 

r ( - ,  , , - )  ~ (C/R)(C/R)17( , , +,  +)  

Z ( - ,  - )  ,~ [17(-, - ,  + ,  +)/R2][(RN)  2 + R N .  C + C ~] 

Fig. 6 

/2 



442 Harvey A. Rose 

In a crude way, this shows that the contributions of the non-ladder diagrams 
compare with those of the ladder diagrams as C compares with RN.  We recall 
from (71) that C is a measure of the correlation between two distinct particles, 
and R N  is the correlation of a particle with itself at (possibly) two different 
times. In plasma physics, R N  would be called particle noise. There are 
clearly many situations, including a low-density system for which C ~ N 2, 
in which the non-ladder diagrams are unimportant, and our T-approximation 
then has a close formal similarity to the usual one. 

Generally speaking, the above analysis illustrates the tendency for a 
given approximation scheme to contain more information in the case of a 
classical gas than in the case of a quantum mechanical gas. Two other 
illustrations are of particular importance for a plasma. The first-order (in 74) 
approximation (72) contains the linearized Vlasov equation and hence a 
reasonable description of screening, whereas in quantum mechanics screening 
is not obtained so simply. Even more striking is the ability of (72) to correctly 
describe (at least) the short-distance behavior of the thermal equilibrium 
pair distribution function for a single-species plasma, while an adequate 
quantum mechanical treatment is considerably more involved. One essential 
reason for the above is that the equal-time density-density correlation 
function can be described by the two-point function C, while in quantum 
mechanics this requires a four-point function. 

In addition to the case of hard-core interactions, the PDIA is unsuitable 
for attractive interactions which can lead to (classical) bound states. The 
T-approximation may be adequate for a description of, for example, the 
formation and dissolution of Kepler orbits in a many-body gravitational 
system. We will have more to say about this in a future publication. 

10. S U M M A R Y  A N D  D I S C U S S I O N  

A renormalized kinetic theory has been presented which can describe the 
evolution of a classical N-body system from an arbitrary initial state. It is 
based upon a recently introduced occupation number formalism of Doi. 
Though there are formal similarities to the quantum mechanical second- 
quantized representation, there are many major differences, of which we list 
a few: 

a. The operator q) has position and momentum as independent variables. 
b. Probability amplitudes are real and are obtained as a matrix element, 

<N[ -.. IF(0)), not the absolute value squared of a matrix element. 
c. The matrix elements of �9 alone are generally nonzero. 
d. The evolution of q~ is determined by a Liouville operator which is 

distinct from the Hamiltonian operator. 
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A second-order mass renormalized approximation, called the PDIA, 
has been introduced and related to the Vlasov plasma turbulence DIA of 
Orszag and Kraichnan, and to the recent plasma turbulence approximation of 
DuBois and Espedal. 

The PDIA is not suitable for hard-core interactions or for interactions 
which lead to classical bound states, but the formal development of T- 
matrix-like approximations which should be appropriate in these cases is 
straightforward. Though the classical description of bound states in a plasma 
may not be of interest, because if they are ever significant a quantum mechani- 
cal description is called for, they are of great interest in the gravitational N- 
body problem. We believe that the formalism outlined in this paper would be 
suitable for a systematic analysis of gravitational turbulence. 

Of course, the task of extracting useful information from a formal 
approximation such as the PDIA is formidable. The technical difficulties will 
be much greater than they are in thermal equilibrium, where equal-time 
correlation functions are known, where there are fluctuation dissipation 
theorems, and where there is translational invariance in time. We will soon 
attempt to numerically integrate the PDIA for a one-species plasma in one 
spatial dimension. 

Perhaps the most distinctive new element presented in this paper is the 
unified treatment of the correlations between a particle and itself and the 
correlations between two distinct particles. This is of special significance in 
plasma turbulence, where the effects of the former (particle noise) are usually 
added to the latter (usually derived from a theory of Vlasov plasma tur- 
bulence) in an ad hoc fashion. Even when particle noise may be treated as a 
small perturbation, and its effects adequately described by the methods of 
DuBois and Especial, there remain the spuriously large particle noise effects 
found in computer simulations which use a relatively small number of 
particles. In practice, these effects are reduced by the use of various smoothing 
techniques, which could be improved through a better understanding of 
strong particle noise. 

A P P E N D I X  A. C O R R E L A T I O N  F U N C T I O N  E Q U A T I O N S  FOR 
A R B I T R A R Y  INITIAL C O N D I T I O N S  

The generalization of the Schwinger variational equations for initial 
states with GN(+, +,.. . ,  + )  ~ 0 for N > 2 can be obtained in a manner 
similar to that used in the case of classical random processes with non- 
Gaussian initial conditions. We shall not provide a complete proof of the 
former; instead, a brief outline of its essential features is given and the reader 
is referred to Deker's(21~ analysis for more details. 
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The mean field equation of motion in the presence of the external source 
is incomplete in the sense that its initial condition has an unknown ~7 

dependence. However, if the initial state is the vacuum, then G"(q, +,  t = O) 
= 0. The actual initial state can be developed from the vacuum by applying 
an impulsive, random particle source. Consider 

c~(t) = ~o(t)  + f dq#(q)  8(011 - W*(q)] (A1) 

where s is the original Liouville operator, and /3 is a random function 
specified below. Immediately after the source has acted, the state of the 
system is 

j. 
IF(0+)) = exp dq/3(q)[~F*(q) - 1][0) 

and the particle statistics can be obtained from the generating function S 

S(b) = ln((sum I e x p f  dq{b(q)~F(q) +/3(q)[tF*(q) - 1]}i0)) (A2) 

The outer brackets ( . . .)  refer to an average over/3. Denote the argument bW 
by A and the argument/3[~F* - 1] by B. Since the commutator of A and B 
is a c-number, and since 

eA]O) = [ 0 ) ,  (sum[e B = ( s u m ]  

we may use the well-known operator identity 

to obtain 

eAe B = eBeAe[A, B] 

/ .  

S(b) = In < exp J dq b(q)#(q) > (A3) 

The cumulants o f#  are therefore chosen to be in a one to one correspondence 
with the initial value Ursell functions, Uu(qN; 0). 

Before deriving an expression for the full generating function W defined 
in Eq. (45), it is useful to make the transformation 

0 = q ~ ,  0 t =~F t -  1 (A4) 

Let Oo(q, t) and Oo+(q, t) denote the operators which evolve according to 
LT'0. Instead of W, calculate Z, defined by 

o o  

e z = ( ( s u m I T e x p f  ~ dqdt  [~7(q, + ,  t)O(q, t) + ~7(q, - ,  t)Ot(q, t)]10>> (A5) 
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Use the time-dependent perturbation formalism of Section 4 to obtain in the 
usual way 

fo e z --- ( ( sum[Texp  dq dt [~(q, +,  t)Oo(q, t) 

+ ~(q, --, t)Oot(q, t) + fi(q) 3(t)Oot(q, t)][0))  

= (sum[TexP~o dt dq [-q(q, + ,  t)Oo(q, t) + n(q, - ,  t)Oo'(q, t)l 

+ ~(t) ~1 dqN UN(qN; O)O0*(ql, t) ' O0*(q,~, t) 10) (A6) 

Equation (A6) is the interaction representation of Z for a system with the 
effective Liouville operator ~e~f, 

~ 1 @(t~ef, = C~o(t) + 8(t) ~ ~ O*(q~) ... O*(qN)Uz~(qn; 0) (A7) 
J7=1= 

We have thus transformed a system whose initial state is described by 
the collection of Ursell functions {UN} and whose evolution is determined by 
~0 into another system which has the vacuum as its initial state and whose 
evolution is determined by ~eff- AS shown by Deker, (21~ the standard ma- 
nipulations (11~ can now be applied to the latter to obtain the renormalized 
correlation function equations. 

A P P E N D I X  B. PROPERTIES OF r 4  IN THE T - A P P R O X I M A T I O N  

Since all the cumulants of W* vanish, so must P4(+,  + ,  + ,  +).  The 
integral equation in Fig. 3 for I' 4 therefore has four components, one for each 
o f r 4 ( - , + , + , + ) , F 4 ( - , - , + , + ) , r , ( - ,  , , + ) , a n d r 4 ( - ,  , , ), 
and in this appendix our attention is focused only on some of the properties 
of the first two. 

The bare vertex function 74 is the source of F4. The 7 4 ( - ,  - ,  + ,  + )  is 
the sole component of the former that is nonzero, and hence it is only the 
corresponding component of the latter that effectively has a source. Consider 
now the equation for F 4 ( - ,  + ,  + ,  +).  Since G ( - ,  - )  = 0, each of its 
terms contains at least one factor of F~(--, + ,  + ,  +).  It follows that the 
iterative solution of the T-approximation, which takes F4 = 74 as the zeroth 
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i teration, yields I ' 4 ( - ,  + ,  + ,  + )  = 0. Since G ( - ,  - )  = 1 ~ ( - ,  + ,  + ,  + )  = 0, 
the equat ion  for  I ' 4 ( - ,  - ,  + ,  + )  has the fo rm 

F 4 ( t z , - ; t 2 , - ; t a , + ; t 4 ,  + )  

= 7 4 ( t l , - - ; t 2 , - ; t 3 , + ; t 4 ,  + )  

+ I '4(fi,  - ; t2, - ; ts ,  + ; t6, + ) R ( t s ,  tT)R(t6, ts) 

x F~(tT, - ; ts, - ; ta, + ; t4, + )  

+ r~( t l ,  - ;  t8, + ; ts, + ; t7, - ) R ( t ~ ,  t6)R(ts ,  tT) 

x I ' , ( t6,  - ;  t8, + ; t2, - ; t~, + )  (B1) 

In  Eq. (B1), the second te rm on the r ight-hand side by itself would generate 
the ladder  diagrams.  I t  is easy to show tha t  

r , ( h ,  - ; t2, - ; ta, + ; t4, + )  ,,~ 3(tz - t2) 3(ta - t4) 

Since R is a re tarded response function, it then follows that  

r , ( t l ,  - ; t~, - ;  ta, + ; t4, + )  = 0 if tl < ta (B2) 

Equat ions  (B1) and (B2) imply tha t  the third t e rm on the r ight-hand side of  
(B1) vanishes. Fo r  future reference, we also note  tha t  

P4(tl ,  - ; t2, - ;  ta, - ; t4, + )  = 0 (B3) 

if any of  q ,  t~, or  ta is less than  t4. 
In  order  to show that  the self-energy Z receives no contr ibut ion f rom the 

~,4P4 te rm (within the f r amework  of  the T-approximat ion) ,  consider Z ( - ,  - ) ,  

Z ( h ,  - ; t2, - )  . . . .  + ~ '~(- ,  - ,  + ,  + ) R ( t 4 ,  h ) R ( h ,  t s ) C ( h ,  t3) 

x I74(t4, + ; t s , - ; t a ,  + ; t 2 , - )  

+ 74( , , + ,  ~-)R(t~,  q ) R ( h ,  t s ) R ( h ,  t3) 

x P4(t4, + ; to, - ; t3, - ; t2, - )  

where only the terms of  interest have been schematically displayed. Equat ions  
(B2) and (B3) imply that  the above expression vanishes. Similarly, it can be 
shown that  the corresponding expression for  Z ( - ,  + )  vanishes. 
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